Meeting Banner
Abstract #4654

Multi-scale Unrolled Deep Learning Network for Accelerated MRI

Ukash Nakarmi1,2, Joseph Yitan Cheng1,2, Edgar Anselmo Rios Piedra1,2, Morteza Mardani1,2, John M Pauly2, Leslie Ying3,4, and Shreyas Vasanawala1

1Department of Radiology, Stanford University, Stanford, CA, United States, 2Department of Electrical Engineering, Stanford University, Stanford, CA, United States, 3Department of Electrical Engineering, University at Buffalo, Buffalo, NY, United States, 4Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States

Model prior based reconstruction and data-centric prior reconstruction are two strong paradigms in image reconstruction inverse problems. In this abstract, we propose a framework that integrates the model prior and data-centric multi-scale deep learning priors for reconstructing magnetic resonance images (MRI) from undersampled k-space data. The proposed framework brings together the best of both paradigms and has proven superior to conventional accelerated MRI reconstruction techniques.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords