Cardiac MR imaging plays an important role in clinical diagnosis. But the long scan time limits its wide applications. To accelerate data acquisition, deep learning based methods have been applied to effectively reconstruct the undersampled images. However, current deep convolutional neural network (CNN) based methods do not make full use of the hierarchical features from different convolutional layers, which impedes their performances. In this work, we propose a cascaded residual dense network (C-RDN) for dynamic MR image reconstruction with both local features and global features being fully explored. Our proposed C-RDN achieves the best performance on in vivo datasets compared to the iterative optimization methods and the state-of-the-art CNN method.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords