Meeting Banner
Abstract #4695

Convolutional Neural Networks with Aliasing Layers for Correcting Parallel Imaging and EPI Ghost Artifacts

Hidenori Takeshima1

1Advanced Technology Research Department, Research and Development Center, Canon Medical Systems Corporation, Yokohama, Japan

The author proposes a new layer named aliasing layer (AL) for effectively correcting MR-specific aliasing artifacts using convolutional neural networks. In MR images acquired using parallel imaging (PI) and/or echo-planar imaging (EPI), the locations of aliasing artifacts and/or N/2 ghost artifacts can be analytically calculated. The AL preprocesses MR images by moving the calculated locations to the locations accessible through summations over all channels in a convolution layer. The experimental results demonstrate that the correction method using the proposed AL could effectively remove PI aliasing and EPI ghosting artifacts.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords