The author proposes a new layer named aliasing layer (AL) for effectively correcting MR-specific aliasing artifacts using convolutional neural networks. In MR images acquired using parallel imaging (PI) and/or echo-planar imaging (EPI), the locations of aliasing artifacts and/or N/2 ghost artifacts can be analytically calculated. The AL preprocesses MR images by moving the calculated locations to the locations accessible through summations over all channels in a convolution layer. The experimental results demonstrate that the correction method using the proposed AL could effectively remove PI aliasing and EPI ghosting artifacts.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords