The proper methodology to perform rigorous quantitative task-based assessment of image quality for deep learning based MR reconstruction methods has not been devised yet. In this study we reconstructed T1-weighted brain images using neural networks trained with five different datasets, and explored the consistency and relationship between rankings of image quality using three different assessment metrics and FreeSurfer-based quantitative analysis. Our study indicates that assessment of image quality for a data-driven reconstruction algorithm may require several types of analysis including using different image quality assessment metrics and their agreement with clinically relevant tasks.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords