Meeting Banner
Abstract #4702

Deep Partial Fourier Reconstruction

Alexander R Toews1,2, Marcus T Alley2, Shreyas S Vasanawala2, Brian A Hargreaves1,2,3, and Joseph Y Cheng2

1Electrical Engineering, Stanford University, Stanford, CA, United States, 2Radiology, Stanford University, Stanford, CA, United States, 3Bioengineering, Stanford University, Stanford, CA, United States

Standard methods for partial Fourier (PF) reconstruction do not perform well in the presence of significant phase variations. In this study, we propose a deep-learning-based approach for PF reconstruction (DPFR) to mitigate this issue. We compare DPFR results against standard methods (Homodyne, POCS) for in vivo images of the foot, leg, and abdomen. We demonstrate that DPFR achieves superior reconstruction quality, especially near phase boundaries, across a range of partial sampling parameters. Ultimately this may extend the applicability of partial Fourier reconstruction to instances where it is not commonly used.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords