Meeting Banner
Abstract #4705

Improved TWIST Imaging using k-Space Deep Learning

Eunju Cha1, Eung Yeop Kim2, and Jong Chul Ye1

1KAIST, Daejeon, Korea, Republic of, 2Gachon University Gil Medical Center, Incheon, Korea, Republic of

Time-resolved angiography with interleaved stochastic trajectories(TWIST) has been widely used for dynamic contrast enhanced (DCE) MRI. To achieve highly accelerated acquisitions for improved temporal and spatial resolution, the high frequency region is randomly sub-sampled at each time frame. Therefore, the periphery of the k-space data from multiple time frames are combined to obtain the uniformly sub-sampled k-space data so that the temporal resolution of TWIST is limited. The purpose of this research is to improve the temporal resolution of TWIST by reducing the view-sharing. Furthermore, we proposed the algorithm that can reconstruct the imagesat various number of view sharing using k-space deep learning.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords