We proposed a new deep learning architecture for the reconstruction of highly undersampled data. The new architecture combines an iterative generative adversarial network (GAN) with a shared discriminator and interacts with data consistency blocks. The algorithm was applied to accelerate the data acquisition of the routine clinical protocols, particularly 2D Cartesian sampling sequences. The new method was tested to explore generalizability of the algorithm in in-vivo data under various conditions (difference pulse sequences, organs, coil types, sites, and health condition).
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords