Cine-cardiac MRI reconstruction relies on the ECG signal to sort k-space data. However, ECG triggering comes with disadvantages among which increased setup time. Here we suggest an alternative method of sorting cine MRI k-space data using deep-learning. An explorative study has been performed using an encoder-decoder network with Sinkhorn layer to sort k-space data that was randomly disordered in one spatial dimension. Good reconstructions were obtained using a group size of 8 or more k-space lines during randomization. These results hold promise for subsequent application in the time dimension.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords