In recent years, many deep learning approaches have been developed and tested for automatic segmentation of gliomas. However, few studies have shown its potential for use in patients with brain metastases. Deep learning may ultimately aid radiologists in the tedious and time-consuming task of lesion segmentation. The objective of this work is to assess the clinical potential and generalizability of a deep learning technique, by training and testing a convolutional neural network for segmenting brain metastases using multi-center data.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords