In this work, we proposed a deep learning structure called SE-UNet for carotid vessel wall segmentation on 3D golden angle radial k-space sampling simultaneous non-contrast angiography and intraplaque hemorrhage (GOAL-SNAP) images. The structure of network consisted of an encoder path for feature extraction and a decoder path for precise localization. The squeeze-and-excitation (SE) module was introduced to the encoder part to learn the context between channels. The proposed SE-UNet achieved high IOU of 0.786, and high pixel-wise sensitivity of 0.976, specificity of 0.850.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords