Recurrent Inference Machines (RIM) are deep learning inverse problem solvers that have been shown to generalize well to anatomical structures and contrast settings it was not exposed to during training. This makes RIMs ideal for accelerated MRI reconstruction, where the variation in acquisition settings is high. Using T1- and T2*-weighted brain scans and T2-weighted knee scans, we compare the RIM's performance when trained on only a single type of data against the case where all three data types are present in the training set. We present results that show an overall model robustness, but also indicate a slight preference for training on all three types of data.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords