Meeting Banner
Abstract #4785

ShiftNets: Deep Convolutional Neural Networks for MR Image Reconstruction & the Importance of Receptive Field of View

Philip K. Lee1,2, Makai Mann1, and Brian A. Hargreaves1,2,3

1Electrical Engineering, Stanford University, Stanford, CA, United States, 2Radiology, Stanford University, Stanford, CA, United States, 3Bioengineering, Stanford University, Stanford, CA, United States

Deep learning has been applied to the Parallel Imaging problem of resolving coherent aliasing in image domain. Convolutional neural networks have finite receptive FOV, where each output pixel is a function of a limited number of input pixels. For uniformly undersampled data, a simple hypothesis is that including the aliased peak in the receptive FOV would improve suppression of aliasing. We show that a simple channel augmentation scheme allows us to resolve aliasing using 50x fewer parameters than a large U-Net with millions of parameters and a global receptive FOV. This method was tested on retrospectively undersampled knee volumes.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords