Direct learning of a domain transform to reconstruct images with flexible data acquisition schemes represents a step to achieve intelligence in image reconstruction. However, a technical challenge that is encountered with the domain transform type of learning strategy is that current network architectures and training strategies are GPU memory hungry. As a result, given the currently available GPUs with memory on the order of 24 GB, it is very difficult to achieve high resolution (beyond 128x128) MRI reconstruction. The main purpose of this paper is to present a divide-and-conquer strategy to reconstruct high resolution (better than 256x256) MRI images via domain transform learning while staying within the current GPU memory restrictions.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords