Meeting Banner
Abstract #4793

Spatio-Temporal Undersampling Artefact Reduction with Neural Networks for Fast 2D Cine MRI with Limited Data

Andreas Kofler1, Marc Dewey1, Tobias Schaeffter2,3, Christian Wald1, and Christoph Kolbitsch2,3

1Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany, 2Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany, 3School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom

A well-known bottleneck of neural networks is the requirement of large datasets for successful training. We present a method for reduction of 2D radial cine MRI images which allows to properly train a neural network on limited datasets. The network is trained on spatio-temporal slices of healthy volunteers which are previously extracted from the image sequences and is tested on patients data with known heart dysfunction. The image sequences are reassembled from the processed spatio-temporal slices. Our method is shown to have several advantages compared to other Deep Learning-based methods and achieves comparable results to a state-of-the-art Compressed Sensing-based method.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords