Meeting Banner
Abstract #4796

Feasibility of brain white matter segmentation on multi-echo T2-weighted images without registration: a Neural Network approach.

Jackie Yik1,2, Roger Tam3,4, Cristina Rubino5, Lara Boyd6, David K.B. Li4,7, Cornelia Laule1,2,4,8, and Hanwen Liu1,2

1Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada, 2International Collaboration on Repair Discoveries, Vancouver, BC, Canada, 3School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada, 4Radiology, University of British Columbia, Vancouver, BC, Canada, 5Rehabilitation Sciences, University of British Columbia, Vancouver, BC, Canada, 6Physical Therapy, University of British Columbia, Vancouver, BC, Canada, 7Medicine, University of British Columbia, Vancouver, BC, Canada, 8Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada

Most current methods of human brain white matter segmentation require registration to T1 image space. Artificial intelligence can reduce potential errors in, and speed up, this process by segmenting white matter from T2-weighted images directly. A neural network was pre-trained using T1-weighted images and FSL’s FAST followed by T2-weighted images using transfer learning. The network could then segment new T2-weighted images directly. T1- and T2-weighted image segmentations using the neural network were comparable to FSL’s FAST. Our work shows the feasibility of multi-echo T2-weighted images for brain white matter segmentation without initial segmentation and registration of T1-weighted images.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords