Motion during MRI scan can reduce image quality due to the induced artifacts. We present a novel data-driven motion correction method for magnitude MR images using generative adversarial networks (GANs). GANs (Pix2pix model) is implemented to reduce motion artifacts and reconstruct motion-corrupted images through adversarial training between generator and discriminator to force motion-corrected image close to the reference image. The training set is made of image pairs, which consist of motionless reference images and corresponding motion-simulated images. The proposed method was validated by a simulated motion test set and a real motion (experimental) test set.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords