Meeting Banner
Abstract #4857

Motion Correction of Magnitude MR Images using Generative Adversarial Networks

Yuan Bian1, Ye Wang2, and Stanley Reeves1

1Electrical and Computer Engineering, Auburn University, Auburn, AL, United States, 2Computer Science and Software Engineering, Auburn University, Auburn, AL, United States

Motion during MRI scan can reduce image quality due to the induced artifacts. We present a novel data-driven motion correction method for magnitude MR images using generative adversarial networks (GANs). GANs (Pix2pix model) is implemented to reduce motion artifacts and reconstruct motion-corrupted images through adversarial training between generator and discriminator to force motion-corrected image close to the reference image. The training set is made of image pairs, which consist of motionless reference images and corresponding motion-simulated images. The proposed method was validated by a simulated motion test set and a real motion (experimental) test set.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords