Meeting Banner
Abstract #4884

Structural- and Functional-Connectivity Convolution Neural Networks (SCFCnn) for Integrated Brain-Behavior Prediction in the HCP dataset

Ying-Chia Lin1,2, Steven Baete1,2, Xiuyuan Wang1,2, and Fernando Boada1,2

1Center for Advanced Imaging Innovation and Research (CAI2R), NYU School of Medicine, New York, NY, United States, 2Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, United States

In this work, we investigate an efficient structural (SC)- and functional (FC)-connectivity convolution neural network (SCFCnn) architecture applied on both FC and SC to detect the links between individual non-imaging language traits and invivo MRI measurements in a subset of the Human Connectome Project (HCP) s900 dataset. The identified structure-function relationships can be used to infer neurocognitive measures from neuroimaging. Our new architecture outperforms popular deep learning neural networks, confirming the importance of convolutional neural networks applied to brain connectivity for better predictive performance in neurocognitive measurements.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords