Meeting Banner
Abstract #4919

Global Information Matters in Quantitative Susceptibility Mapping Using 3D Fully Convolutional Neural Networks

Yicheng Chen1,2, Angela Jakary2, Christopher Hess2, and Janine Lupo1,2

1The UC Berkeley - UCSF Graduate Program in Bioengineering, San Francisco, CA, United States, 2Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States

Recent research has shown that deep convolutional neural networks (DCNNs) have the potential to solve the ill-posed dipole inversion problem in quantitative susceptibility mapping (QSM). This study investigates the effects of patch-based QSM reconstruction by modifying a DCNN to take global susceptibility-phase relation into consideration.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords