Meeting Banner
Abstract #0455

Pilot tone–based respiratory motion correction for 2D myocardial T1 mapping

Juliane Ludwig1, Kirsten Miriam Kerkering1, Peter Speier2, Frank Seifert1, Tobias Schaeffter1,3,4, and Christoph Kolbitsch1,3
1Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany, 2Siemens Healthcare, Erlangen, Germany, 3Division of Imaging Sciences and Biomedical Engineering, King's College London, London, Germany, 4Biomedical Engineering and Einstein Center Digital Future, Technische Universität Berlin, Berlin, Germany

Respiratory heart motion during T1 data acquisition can lead to strong motion artefacts, compromising the quality of reconstructed T1 maps. Commonly, breathhold techniques are used to minimize respiratory motion but they suffer from low scan efficiency and require patient cooperation. Here, we propose a Pilot tone-based respiratory motion correction approach for free-breathing myocardial T1 mapping. First, through-plane motion is corrected for by performing prospective slice tracking online during data acquisition. Second, in-plane motion is corrected for retrospectively by applying a phase shift to k-space data before image reconstruction. The feasibility of the proposed approach was demonstrated in four healthy volunteers.

This abstract and the presentation materials are available to 2020 meeting attendees and eLibrary customers only; a login is required.

Join Here