T2W FSE-PROPELLER is robust to susceptibility artifacts and bulk motion, but requires longer acquisition times compared to conventional FSE methods. Recently, a reduced Field-Of-View PROPELLER sequence using rotating outer volume suppression method has been proposed and optimized to reduce the scan time for small FOV and high-resolution T2W imaging. However, image SNR is comparatively lower compared to the conventional PROPELLER with phase oversampling. In this work, a deep learning based PROPELLER reconstruction method was used to improve the SNR and image quality of the reduced Field-Of-View PROPELLER.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords