With the advent of active acquisition-reconstruction pipelines, this study shows that by exploiting motion, robust intermediate reconstructions can be used to exploit the entire k-space budget and stabilise deep learning methods for accelerated dynamic MRI. The generated intermediate reconstructions are known as data-consistent motion-augmented cines (DC-MAC). A motion-exploiting convolutional neural network (ME-CNN), which incorporates the DC-MAC, is evaluated against a similar model to that used in a recent active acquisition-reconstruction study, the data-consistent convolutional neural network (DC-CNN). We find that the ME-CNN outperforms DC-CNN but also the DC-MAC offers better reconstructions at low acceleration rates.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords