Automatic segmentation of MRI-visible multiple sclerosis (MS) lesions could potentially reduce assessment time and inter- and intra-rater variability. Recently, automatic methods using deep convolutional neural networks (CNN) have obtained great results in image segmentation. This work implements a state-of-the-art 2D CNN-based segmentation method from literature and extends and recalibrates it to a local MS dataset of 91 patients. A clinical evaluation is performed on an independent MS dataset of 53 patients, where 94% of predicted segmentation masks were deemed valuable for clinical use.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords