We tried to establish a model based on features extracted from Pyradiomic framework and Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe) in MRI to predict the prognosis of gliomas. Fifty-five pathologically confirmed glioma patients were retrospectively collected. All patients underwent 3DTI enhancement, standardized treatment and follow-up for overall survival. 1781 Pyradiomic features and 260 CoLlAGe features were collected. Three Cox proportional hazards models were fitted with Pyradiomics features, CoLlAGe features and Pyradiomics+CoLlAGe features. The C-index in these models were 0.835, 0.820 and 0.844, respectively. The model with Pyradiomics+CoLlAGe features demonstrated improved survival predictive performance than the single model.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords