We hypothesized that deep weakly-supervised learning could detect acute ischemic stroke (AIS) and hemorrhagic infarction (HI) lesions using diffusion-weighted imaging. Each image slice was assigned an annotation indicating whether or not the slice contained a lesion. The proposed method was trained on an AIS dataset using 417 patients with weakly-labeled lesions and evaluated on a dataset using 319 patients with fully-labeled lesions, which detected lesions with high accuracy. The method was trained on a HI dataset using 240 patients with weakly-labeled lesions and evaluated using 65 patients with fully-labeled lesions. Lesion detection sensitivities were 87.7% (AISs) and 86.2% (HIs).
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords