Meeting Banner
Abstract #2257

On the dynamic range of Reynolds stress tensor quantification

Simon Schmidt1, Kristine John2, Martin Bruschewski2, Sebastian Flassbeck1, Mark E. Ladd1, Sven Grundmann2, and Sebastian Schmitter1,3
1Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany, 2Institute of Fluid Mechanics, University of Rostock, Rostock, Germany, 3Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany

In this work, we successfully quantified the Reynolds stress tensor (RST) in a well-known fluid-dynamic test case: the flow over periodic hills. This test case was chosen because the turbulence in this kind of flow is strongly inhomogeneous and anisotropic, representing a challenging measurement task. The results indicate, in analogy to intravoxel velocity standard deviation (IVSD) mapping, that RST quantification is highly susceptible to the applied $$$m_1^{enc}~$$$value. Furthermore, RST mapping inherently requires a higher dynamic range compared to IVSD mapping, since the shear stresses are typically much lower than the normal stresses.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords