Breast cancer risk in high risk women is significantly increased for those with high background parenchymal enhancement (BPE) compared to low BPE, yet there is only fair to moderate inter-rater agreement for BPE assessment among radiologists, limiting the use of BPE as a marker of cancer risk. We developed a deep learning algorithm that classifies BPE with high accuracy. The algorithm works best when sub-MIPs, not MIPs, are used as network inputs. The algorithm has potential to autopopulate breast MRI reports in our breast imaging clinic, and ultimately to standardize BPE as a marker of breast cancer risk.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords