This work uses the quantification of parameter-estimation uncertainty to assess the clinical suitability of IVIM acquisition schemes. We apply this analysis to two bone marrow classification tasks. We simulate IVIM data and show that fitting a simplified, biased, diffusion model (ADC), can, under certain clinically relevant conditions, outperform ground-truth IVIM fitting. We further show that, within the same disease, the opposite can also be true: IVIM outperforms ADC. Such results can play an important role in guiding clinical DWI practice and we show that they can be predicted by explicitly quantifying the uncertainty in parameter estimation.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords