Meeting Banner
Abstract #3194

Feasibility of magnetic resonance based electrical properties tomography with deep learned reconstruction based denoising

Ho-Joon Lee1, Yeonah Kang1, Marc Lebel2, Joon-Hyeong Kim3, Dong-Hyun Kim3, and Sung-Min Gho4
1Department of Radiology, Haeundae Paik Hospital, Busan, Republic of Korea, 2MR Collaboration and Development, GE Healthcare, Calagary, AB, Canada, 3Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea, 4MR Collaboration and Development, GE Healthcare, Seoul, Republic of Korea

With advances in deep learning, feasibility has been investigated for MREPT reconstruction showing interesting results. However whether images denoised with deep learned reconstruction will improve EPT map quality has not been investigated. After denoising of complex data acquired with a DL algorithm, EPT maps were generated with phase based 2D-weighted polynomial fitting. Use of DL, shows better results as compared to conventionally generated maps (i.e. decreased NRMSE, increased PSNR and SSIM, with increasing denoising levels), and results in sharper appearing maps. Spreading of boundary artifacts are not observed with increasing denoising factors.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords