Meeting Banner
Abstract #3435

Scan-specific, Parameter-free Artifact Reduction in K-space (SPARK) 

Onur Beker1,2, Congyu Liao1,3, Jaejin Cho1,3, Zijing Zhang1,4, Kawin Setsompop1,3,5, and Berkin Bilgic1,3,5
1Martinos Center for Biomedical Imaging, Charlestown, MA, United States, 2Electrical and Electronics Engineering, Bogazici University, Istanbul, Turkey, 3Harvard Medical School, Boston, MA, United States, 4College of Optical Science and Engineering, Zhejiang University, Hangzhou, China, 5Harvard/MIT Health Sciences and Technology, Cambridge, MA, United States

We propose a convolutional neural network (CNN) approach that works synergistically with physics-based reconstruction methods to reduce artifacts in accelerated MRI. Given reconstructed coil k-spaces, our network predicts a k-space correction term for each coil. This is done by matching the difference between the acquired autocalibration lines and their erroneous reconstructions, and generalizing this error term over the entire k-space. Application of this approach on existing reconstruction methods show that SPARK suppresses reconstruction artifacts at high acceleration, while preserving and improving on detail in moderate acceleration rates where existing reconstruction algorithms already perform well; indicating robustness.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords