Ill-posed inverse problems embodied in parallel imaging remain an active research topic in several decades, with new approaches constantly emerging. Built on the observation that both dictionary learning and conventional sparse coding extract high-frequency component to model, we derived a novel strategy named HDAEP to explore the prior on high-frequency domain on the basis of denoising autoencoding. After the prior is learned from the trained network, the iteratively Gauss-Newton method is employed to jointly estimating the images and coil sensitivities. Experimental results show that the proposed method can achieve superior performances on parallel MRI reconstruction compared to state-of-the-arts.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords