Meeting Banner
Abstract #3504

Evaluation of point-spread-function and signal-to-noise ratio in highly-accelerated Compressed Sensing-SENSE (CS-SENSE) and SENSE MRI 

Di Cao1,2,3, Adrian G.Paez1,2, Xinyuan Miao1,2, Dapeng Liu1,2, Chunming Gu1,2,3, and Jun Hua1,2
1F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States, 2The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States, 3Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States

We seek to experimentally evaluate the point-spread-function (PSF) and signal-to-noise ratio (SNR) in sequences accelerated using conventional SENSE and the recently developed Compressed Sensing-SENSE (CS-SENSE) with acceleration-factors (R) ranging from 0 to 28. Both CS-SENSE and SENSE had little effect on the PSF in the tested 3D turbo-spin-echo (TSE) sequences. CS-SENSE showed preserved SNR-per-unit-time even when R=28 (compared to R=0), while SENSE reduced SNR-per-unit-time significantly when R≥4. Fold-over artifacts were seen on SENSE images with R≥8, but not on CS-SENSE images for R=0-28. Overall, CS-SENSE seems to show clear advantages compared to SENSE, especially with high acceleration-factors.

This abstract and the presentation materials are available to 2020 meeting attendees and eLibrary customers only; a login is required.

Join Here