The existing deep learning networks for MR super-resolution image reconstruction using standard 3D convolutional neural networks typically require a huge amount of parameters and thus excessive computational complexity. This has restricted the development of deeper neural networks for better performance. Here we propose a lightweight separable 3D convolution neural network for MR image super-resolution. Results show that our method can not only greatly reduce the amount of parameters and computational complexity but also improve the performance of image super-resolution.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords