This study presented a hyperparameter-free deep network modal for cranial pseudo-CT generation. The model was potentially universal to various scanning machines without the need of network hyperparameter adjustment and could handle testing images from MR- and CT-simulators different from the training data. It is beneficial to perform clinical trial in institutions where multiple MR- and CT-machines are in operations, without supervision by deep learning experts. The proposed model was examined using training and testing datasets acquired from two sets of MR- and CT-simulators, showing promising accuracy, <79 mean-absolute-error and <170 root-mean-squared-error.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords