In this work, we propose a novel neural network architecture named ‘ETER-net’ as a unified solution to reconstruct an MR image directly from k-space data. The proposed image reconstruction network can be applied to k-space data that are acquired with various scanning trajectories and multi or single-channel RF coils. It also can be used for semi-supervised domain adaptation. To evaluate the performance of the proposed method, it was applied to brain MR data obtained from a 3T MRI scanner with Cartesian and radial trajectories.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords