Meeting Banner
Abstract #3593

A direct MR image reconstruction from k-space via End-To-End reconstruction network using recurrent neural network (ETER-net)

Changheun Oh1, yeji han2, and HyunWook Park1
1Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea, Republic of, 2Biomedical engineering, Gachon University, Incheon, Korea, Republic of

In this work, we propose a novel neural network architecture named ‘ETER-net’ as a unified solution to reconstruct an MR image directly from k-space data. The proposed image reconstruction network can be applied to k-space data that are acquired with various scanning trajectories and multi or single-channel RF coils. It also can be used for semi-supervised domain adaptation. To evaluate the performance of the proposed method, it was applied to brain MR data obtained from a 3T MRI scanner with Cartesian and radial trajectories.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords