Reliable MRI reconstruction is crucial for accurate diagnosis. However, high resolution imaging leaves substantial uncertainty about the authenticity of the recovered pixels especially when using overparameterized deep learning. Leveraging variational autoencoders (VAEs), this study proposes a Bayesian imaging algorithm that distills the uncertainty in a low-dimensional latent code. One can then simply draw independent samples from the decoder to procure pixel variance maps along with the image. To further quantify the prediction risk of unseen images, we adopt Stein's Unbiased Risk Estimator (SURE), which we find correlates well with the true risk.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords