Meeting Banner
Abstract #4340

Diffusion Weighted Imaging using PROPELLER Acquisition and a Deep Learning based Reconstruction

Xinzeng Wang1, Daniel Litwiller2, Ali Ersoz3, Marc Lebel4, Sagar Mandava5, Lloyd Estkowski3, Arnaud Guidon6, Ann Shimakawa7, and Ersin Bayram1
1Global MR Applications & Workflow, GE Healthcare, Houston, TX, United States, 2Global MR Applications & Workflow, GE Healthcare, New York, NY, United States, 3Global MR Applications & Workflow, GE Healthcare, Waukesha, WI, United States, 4Global MR Applications & Workflow, GE Healthcare, Calgary, AB, Canada, 5Global MR Applications & Workflow, GE Healthcare, Tucson, AZ, United States, 6Global MR Applications & Workflow, GE Healthcare, Boston, MA, United States, 7Global MR Applications & Workflow, GE Healthcare, Menlo Park, CA, United States

PROPELLER DWI, a FSE based DWI method, is increasingly used to reduce susceptibility artifacts and motion artifacts. Multi-shot Echo-Planar diffusion method also can reduce susceptibility artifacts, but PROPELLER DWI shows better image quality where susceptibility artifacts are most problematic, such as in skull base, head-neck and pelvis. However, the acquisition time is often longer compared to ms-DW-EPI, therefore SNR is usually compromised to reduce acquisition time. In this work, we evaluated a deep-learning based reconstruction method (DL Recon PROP) intended to improve image quality and ADC measurements by reducing the noise and artifacts without increasing acquisition time.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords