NoiseFactors is a probabilistic graphical model to suppress and remove additive noise in a single DWI image. It mitigates the issues caused by noise by preserving correlations in the signal components and suppressing the uncorrelated noise within local neighbourhoods. We solve the low-rank approximation problem by learning a best m-component approximation of a factor model. To do so we also introduce a novel flipped bi-crossvalidation to estimate the factor model. It outperforms the state-of-the-art PCA based methods such as Marchenko-Pastur PCA and Local PCA. The proposed method for denoising will be made available with an open-source implementation in DIPY.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords