While echo-planar diffusion-weighted imaging (EP-DWI) is the main sequence for cancer detection in the prostate peripheral zone, it is susceptible to signal loss and distortion due to B0-field inhomogeneities secondary to a variety of causes, including rectal gas or metal hardware in the pelvis. We were able to demonstrate that a spin-echo based DWI sequence with radial k-space sampling (PROPELLER) can overcome such artifacts and the addition of a deep-learning reconstruction algorithm can overcome the poor signal-to-noise (SNR) profile of the PROPELLER-DWI, overall generating images with minimal-to-no appreciable artifact and favorable SNR.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords