Meeting Banner
Abstract #0126

LAPNet: Deep-learning based non-rigid motion estimation in k-space from highly undersampled respiratory and cardiac resolved acquisitions

Thomas Küstner1,2, Jiazhen Pan3, Haikun Qi2, Gastao Cruz2, Kerstin Hammernik3,4, Christopher Gilliam5, Thierry Blu6, Sergios Gatidis1, Daniel Rueckert3,4, René Botnar2, and Claudia Prieto2
1Department of Radiology, Medical Image and Data Analysis (MIDAS), University Hospital of Tübingen, Tübingen, Germany, 2School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom, 3AI in Medicine and Healthcare, Klinikum rechts der Isar, Technical University of Munich, München, Germany, 4Department of Computing, Imperial College London, London, United Kingdom, 5RMIT, University of Melbourne, Melbourne, Australia, 6Chinese University of Hong Kong, Hong Kong, Hong Kong

Estimation of non-rigid motion is an important task in respiratory and cardiac motion correction. Usually, this problem is formulated in image space via diffusion, parametric-spline or optical flow methods. However, image-based registration can be impaired by aliasing artefacts or by estimating in low image resolution in cases of highly accelerated acquisitions. In this work, we propose a novel deep learning-based non-rigid motion estimation directly in k-space, named LAPNet. The proposed method, inspired by optical flow, is compared against registration in image space and tested for respiratory and cardiac motion as well as different acquisition trajectories providing a generalizable diffeomorphic registration.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords