Meeting Banner
Abstract #0136

Self-tuning stretchable RF receive coil concept using liquid metal encapsulated within an elastic polymer

Elizaveta Motovilova1,2, Jana Vincent3, Victor Taracila3, Fraser Robb3, Ek Tsoon Tan2, James Shin1, Hollis G. Potter2, Darryl B. Sneag2, and Simone Angela Winkler1
1Radiology, Weill Cornell Medicine, New York, NY, United States, 2Radiology, Hospital for Special Surgery, New York, NY, United States, 3GE Healthcare, Aurora, OH, United States

Commercial coils, built to accommodate a wide range of anatomical dimensions, are rigid and of fixed size, thus yielding sub-optimal SNR and patient comfort. Existing flexible/stretchable solutions suffer from resonance detuning due to inductance changes under stretch/deformation. In this work, we propose an alternative coil concept using liquid metal microchannel conductors encapsulated in a stretchable polymer matrix. We developed a self-tuning coil using a stretchable, adaptively compensating, interdigital capacitor. We observed a <0.5% of frequency stability in silico and in vitro. In vivo results were demonstrated on 3T wrist imaging.

This abstract and the presentation materials are available to members only; a login is required.

Join Here