Quantitative MRI often relies on the acquisition of multiple images with different scan settings. Therefore, data redundancy can be exploited to further accelerate imaging by deep learning. We propose a unified model for joint reconstruction and $$$R_2^*$$$-mapping from sparse data and embed this in a Recurrent Inference Machine, an iterative inverse problem solving network. Applied to high-resolution multi-echo gradient echo data of a cohort study covering the entire adult life span, the error in $$$R_2^*$$$ significantly decreases. With increasing acceleration factor, an increasing reduction in error is observed, pointing to a larger benefit for sparser data.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords