Data-driven deep learning (DL) image reconstruction from undersampled data has become a mainstream research area in MR image reconstruction. The generalization of the model on unseen data and out of sample data distribution is still a concern for the adoption of the DL reconstruction. In this work, we present a method of risk assessment in DL MR image reconstruction by generating an uncertainty map along with the reconstructed image. The proposed method re-casts image reconstruction as a classification problem and the probability of each voxel intensity in the reconstructed image can be used to efficiently estimate its uncertainty.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords