Meeting Banner
Abstract #0394

MRI-Based Response Prediction to Immunotherapy of Late-Stage Melanoma Patients Using Deep Learning

Annika Liebgott1,2, Louisa Fay1, Viet Chau Vu2, Bin Yang1, and Sergios Gatidis2
1Institute of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Germany, 2Department of Radiology, University Hospital of Tuebingen, Tuebingen, Germany

The treatment of malignant melanoma with immunotherapy is a promising approach to treat advanced stages of the disease. However, the treatment can cause serious side effects and not every patient responds to it, which means crucial time may be wasted by an ineffective treatment. Assessment of the possible therapy response is hence an important research issue. The research presented in this study focuses on the investigation of the potential of medical imaging and machine learning to solve this task. To this end, we trained and compared different deep learning models on multi-modal PET/MR images to differentiate non-responsive from responsive patients.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords