Meeting Banner
Abstract #0424

Motion-insensitive DTI of Kidney using Prospective Acquisition Motion Correction Triggering

Arun Joseph1,2,3, Laila-Yasmin Mani4, Tom Hilbert5,6,7, Thomas Benkert8, Tobias Kober5,6,7, Bruno Vogt4, and Peter Vermathen3
1Advanced Clinical Imaging Technology, Siemens Healthcare AG, Bern, Switzerland, 2Translational Imaging Center, Sitem-Insel, Bern, Switzerland, 3Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland, 4Department of Nephrology and Hypertension, University Hospital Bern, Inselspital, Bern, Switzerland, 5Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland, 6Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland, 7LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 8Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany

Diffusion tensor imaging (DTI) of the kidney provides important functional information such as diffusion and micro-perfusion of the tissue and additionally estimates anisotropic diffusion of water in renal tubuli. However, these measurements are highly sensitive to respiration-induced motion artifacts which bias the obtained functional information. Here, we propose to use prospective acquisition motion correction (PACE) in combination with free-breathing acquisitions for motion-insensitive diffusion measurements of the kidney. A preliminary qualitative and quantitative validation is performed on healthy subjects comparing results from conventional respiratory-triggered to PACE-triggered DTI.

This abstract and the presentation materials are available to members only; a login is required.

Join Here