Meeting Banner
Abstract #0726

Physiopy: A community-driven suite of tools for physiological recordings in neuroimaging

Katherine Louise Bottenhorn1, Daniel Alcalà-Lopez2, Apoorva Ayyagari3, Molly G Bright4, César Caballero-Gaudes2, Inés Chavarria2, Vicente Ferrer2, Soichi Hayashi5, Vittorio Iacovella6, François Lespinasse7, Ross Davis Markello8, Stefano Moia2, Robert Oostenveld9,10, Taylor Salo1, Rachael Stickland4, Eneko Uruñuela2, Merel Margaretha van der Thiel11, and Kristina M Zvolanek12
1Department of Psychology, Florida International University, Miami, FL, United States, 2Basque Center on Cognition, Brain and Language, Donostia, Spain, 3Northwestern University, Chicago, IL, United States, 4Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States, 5Indiana University, Bloomington, IN, United States, 6CIMeC - Center for Mind / Brain Sciences, The University of Trento, Trento, Italy, 7Psychology, Université de Montréal, Montréal, QC, Canada, 8McGill University, Montréal, QC, Canada, 9Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands, 10NatMEG, Karolinska Institutet, Stockholm, Sweden, 11Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands, 12Biomedical Engineering, Northwestern University, Chicago, IL, United States

Physiopy is a community-driven effort that aims to offer a full data preparation pipeline for non-neural physiological recordings in neuroimaging research and to build consensus on “best practices” among researchers of this specific domain. Its primary goal is to facilitate physiological data collection and sharing, according to an existing data standard and ontology. Corollary goals of the community are to provide recommendations and tools for (1) physiological data acquisition in the MR environment, (2) appropriate processing of these data, (3) organization of resulting datasets and meta-data, and (4) computing metrics for the removal of confounding physiological signals from fMRI data.

This abstract and the presentation materials are available to members only; a login is required.

Join Here