Meeting Banner
Abstract #0747

Running Free on a Low-Field: a Proof of Principle

Davide Piccini1,2, Jerome Yerly2,3, Tobias Kober1,2,4, Lorenzo Di Sopra2, Aurélien Bustin2,5,6, Daniel Giese7, Mario Bacher7, Michaela Schmidt7, Peter Speier7, Christian Geppert7, Rainer Schneider7, David Grodzki7, and Matthias Stuber2,3
1Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland, 2Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland, 3CIBM Center for Biomedical Imaging, Lausanne, Switzerland, 4LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 5IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France, 6Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Pessac, France, 7Magnetic Resonance, Siemens Healthcare, Erlangen, Germany

Low-field MR has recently attracted considerable attention because of reduced overall cost, lower field inhomogeneity, a lower specific absorption rate, and the potential for a more widespread global use. Owing to the simplicity and scalability of our recently developed free-running framework (FRF) for cardiovascular imaging, we here present the first results obtained with FRF at 0.55T. We demonstrate that FRF is scalable to this field strength by successfully reconstructing 5D cardiac- and respiratory motion-resolved whole heart images without the need of any gating or triggering devices, while reducing scan planning to a single mouse-click.

This abstract and the presentation materials are available to members only; a login is required.

Join Here