We proposed a Bloch equation-based autoencoder regularization Generative Adversarial Network (BlochGAN) to generate T2-weighted fat saturation (T2 FS) images from T1-weighted (T1-w) and T2-weighted (T2-w) images for spine diagnosis. Our method can reduce the cost for acquiring multi-contrast images by reducing the number of contrasts to be scanned. BlochGAN properly generates the target contrast images by using GAN trained with the autoencoder regularization based on bloch equation, which is the basic principal of MR physics for identifying the physical basis of the contrasts. Our results demonstrate that BlochGAN achieved quantitatively and qualitatively superior performance compared to conventional methods.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords