Meeting Banner
Abstract #1158

Accelerating Bayesian Compressed Sensing for Fast Multi-Contrast Reconstruction

Alexander Lin1, Demba Ba1, and Berkin Bilgic2,3
1Harvard University, Cambridge, MA, United States, 2Department of Radiology, Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Boston, MA, United States, 3Harvard Medical School, Boston, MA, United States

We propose Bayesian accelerated Compressed Sensing (BaCS) to improve the computational speed of Bayesian CS by two orders of magnitude. We achieve this by circumventing a costly matrix inversion problem using conjugate gradients and Monte Carlo sampling, which lend themselves well to parallel processing using GPUs. Exploiting parallelism renders BaCS even faster than sparseMRI, while having the ability to exploit similarities between multi-contrast images to improve reconstruction performance. Further, we extend BaCS to multi-channel reconstruction by synergistically combining it with SENSE to enable yet higher acceleration rates.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords