Meeting Banner
Abstract #1359

Retrospective motion compensation for spiral brain imaging with a deep convolutional neural network

Quan Dou1, Zhixing Wang1, Xue Feng1, John P. Mugler2, and Craig H. Meyer1
1Biomedical Engineering, University of Virginia, Charlottesville, VA, United States, 2Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, United States

Head motion can severely degrade the quality of MR brain images. A deep convolutional neural network was implemented in this study to retrospectively compensate for motion in spiral imaging. The network was trained on images with simulated motion artifacts and tested on both simulated and in vivo data. The image quality was improved after the motion correction.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords