Meeting Banner
Abstract #1602

Decomposition of the incomplete volume-surface integral equation matrices for MR coil simulations

Ilias Giannakopoulos1, Georgy Dmitrievich Guryev2, Jose Enrique Cruz Serralles2, Ioannis Georgakis1, Luca Daniel2, Jacob White2, and Riccardo Lattanzi1,3,4
1Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States, 2Department of Electrical & Computer Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States, 3The Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States, 4Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, United States

The volume-surface integral equation (VSIE) method is used for rapid and accurate simulations of electromagnetic fields in magnetic resonance imaging. For the case of a 7T array and a numerical head phantom, we constructed the VSIE coupling matrix that models the interactions between the coil and the scatterer. We reshaped the columns of the matrix as incomplete 3D tensors. We investigated how the low rank properties of these tensors, could be exploited to compress the coupling matrix, by expressing the tensors in their canonical form. We showed that an excellent compression could be achieved with an error lower than 2%.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords